Practice: You pull a 3kg box on a flat surface. The coefficient of kinetic friction is 0.6. When you pull the box horizontally through a distance of 10m, it accelerates at 2m/s2. Find the net work on the box.

Clutch Prep is now a part of Pearson

Subjects

All Chapters | ||||
---|---|---|---|---|

Ch 01: Intro to Physics; Units | 1hr & 22mins | 0% complete | ||

Ch 02: 1D Motion / Kinematics | 4hrs & 13mins | 0% complete | ||

Ch 03: Vectors | 2hrs & 43mins | 0% complete | ||

Ch 04: 2D Kinematics | 2hrs | 0% complete | ||

Ch 05: Projectile Motion | 2hrs & 57mins | 0% complete | ||

Ch 06: Intro to Forces (Dynamics) | 3hrs & 20mins | 0% complete | ||

Ch 07: Friction, Inclines, Systems | 2hrs & 43mins | 0% complete | ||

Ch 08: Centripetal Forces & Gravitation | 3hrs & 47mins | 0% complete | ||

Ch 09: Work & Energy | 1hr & 58mins | 0% complete | ||

Ch 10: Conservation of Energy | 2hrs & 49mins | 0% complete | ||

Ch 11: Momentum & Impulse | 3hrs & 45mins | 0% complete | ||

Ch 12: Rotational Kinematics | 3hrs & 3mins | 0% complete | ||

Ch 13: Rotational Inertia & Energy | 7hrs & 4mins | 0% complete | ||

Ch 14: Torque & Rotational Dynamics | 2hrs & 10mins | 0% complete | ||

Ch 15: Rotational Equilibrium | 4hrs & 8mins | 0% complete | ||

Ch 16: Angular Momentum | 3hrs & 6mins | 0% complete | ||

Ch 17: Periodic Motion | 2hrs & 16mins | 0% complete | ||

Ch 19: Waves & Sound | 3hrs & 25mins | 0% complete | ||

Ch 20: Fluid Mechanics | 4hrs & 31mins | 0% complete | ||

Ch 21: Heat and Temperature | 3hrs & 15mins | 0% complete | ||

Ch 22: Kinetic Theory of Ideal Gases | 1hr & 44mins | 0% complete | ||

Ch 23: The First Law of Thermodynamics | 1hr & 28mins | 0% complete | ||

Ch 24: The Second Law of Thermodynamics | 3hrs & 9mins | 0% complete | ||

Ch 25: Electric Force & Field; Gauss' Law | 3hrs & 34mins | 0% complete | ||

Ch 26: Electric Potential | 1hr & 55mins | 0% complete | ||

Ch 27: Capacitors & Dielectrics | 2hrs & 2mins | 0% complete | ||

Ch 28: Resistors & DC Circuits | 3hrs & 20mins | 0% complete | ||

Ch 29: Magnetic Fields and Forces | 2hrs & 34mins | 0% complete | ||

Ch 30: Sources of Magnetic Field | 2hrs & 30mins | 0% complete | ||

Ch 31: Induction and Inductance | 3hrs & 38mins | 0% complete | ||

Ch 32: Alternating Current | 2hrs & 37mins | 0% complete | ||

Ch 33: Electromagnetic Waves | 1hr & 12mins | 0% complete | ||

Ch 34: Geometric Optics | 3hrs | 0% complete | ||

Ch 35: Wave Optics | 1hr & 15mins | 0% complete | ||

Ch 37: Special Relativity | 2hrs & 10mins | 0% complete | ||

Ch 38: Particle-Wave Duality | Not available yet | |||

Ch 39: Atomic Structure | Not available yet | |||

Ch 40: Nuclear Physics | Not available yet | |||

Ch 41: Quantum Mechanics | Not available yet |

Sections | |||
---|---|---|---|

Intro to Energy & Kinetic Energy | 6 mins | 0 completed | Learn |

Intro to Calculating Work | 27 mins | 0 completed | Learn |

Net Work & Work-Energy Theorem | 26 mins | 0 completed | Learn |

Work On Inclined Planes | 17 mins | 0 completed | Learn |

Work By Springs | 16 mins | 0 completed | Learn |

Work As Area Under F-x Graphs | 8 mins | 0 completed | Learn |

Power | 19 mins | 0 completed | Learn |

Concept #1: Calculating Net Work

Practice: You pull a 3kg box on a flat surface. The coefficient of kinetic friction is 0.6. When you pull the box horizontally through a distance of 10m, it accelerates at 2m/s2. Find the net work on the box.

Practice: To pull a 51 kg crate across a rough floor, a worker applies a force of 100 N, directed 37°above the horizontal. The coefficient of friction is 0.16. If the crate moves 3.0 m, what is the total work done on the crate?

Concept #2: The Work-Energy Theorem

Practice: A box slides across the floor with an initial speed of 3.5m/s. If the coefficient of kinetic friction is 0.15, how far will the box slide before stopping completely?

Example #1: Net Work & Constant Speed

0 of 6 completed

Join **thousands** of students and gain free access to **55 hours** of Physics videos that follow the topics **your textbook** covers.

Enter your friends' email addresses to invite them:

We invited your friends!