Practice: A mass-spring system with an angular frequency ω = 8π rad/s oscillates back and forth. (a) Assuming it starts from rest, how much time passes before the mass has a speed of 0 again? (b) How many full cycles does the system complete in 60s?
Subjects
All Chapters | ||||
---|---|---|---|---|
Ch 01: Intro to Physics; Units | 1hr & 22mins | 0% complete | ||
Ch 02: 1D Motion / Kinematics | 4hrs & 2mins | 0% complete | ||
Ch 03: Vectors | 2hrs & 43mins | 0% complete | ||
Ch 04: 2D Kinematics | 2hrs | 0% complete | ||
Ch 05: Projectile Motion | 2hrs & 57mins | 0% complete | ||
Ch 06: Intro to Forces (Dynamics) | 3hrs & 20mins | 0% complete | ||
Ch 07: Friction, Inclines, Systems | 2hrs & 43mins | 0% complete | ||
Ch 08: Centripetal Forces & Gravitation | 3hrs & 43mins | 0% complete | ||
Ch 09: Work & Energy | 1hr & 58mins | 0% complete | ||
Ch 10: Conservation of Energy | 2hrs & 54mins | 0% complete | ||
Ch 11: Momentum & Impulse | 3hrs & 45mins | 0% complete | ||
Ch 12: Rotational Kinematics | 3hrs & 3mins | 0% complete | ||
Ch 13: Rotational Inertia & Energy | 7hrs & 4mins | 0% complete | ||
Ch 14: Torque & Rotational Dynamics | 2hrs & 10mins | 0% complete | ||
Ch 15: Rotational Equilibrium | 4hrs & 8mins | 0% complete | ||
Ch 16: Angular Momentum | 3hrs & 6mins | 0% complete | ||
Ch 17: Periodic Motion | 2hrs & 9mins | 0% complete | ||
Ch 19: Waves & Sound | 3hrs & 25mins | 0% complete | ||
Ch 20: Fluid Mechanics | 4hrs & 31mins | 0% complete | ||
Ch 21: Heat and Temperature | 3hrs & 15mins | 0% complete | ||
Ch 22: Kinetic Theory of Ideal Gases | 1hr & 44mins | 0% complete | ||
Ch 23: The First Law of Thermodynamics | 1hr & 26mins | 0% complete | ||
Ch 24: The Second Law of Thermodynamics | 3hrs & 9mins | 0% complete | ||
Ch 25: Electric Force & Field; Gauss' Law | 3hrs & 34mins | 0% complete | ||
Ch 26: Electric Potential | 1hr & 53mins | 0% complete | ||
Ch 27: Capacitors & Dielectrics | 2hrs & 2mins | 0% complete | ||
Ch 28: Resistors & DC Circuits | 3hrs & 7mins | 0% complete | ||
Ch 29: Magnetic Fields and Forces | 2hrs & 27mins | 0% complete | ||
Ch 30: Sources of Magnetic Field | 2hrs & 30mins | 0% complete | ||
Ch 31: Induction and Inductance | 3hrs & 38mins | 0% complete | ||
Ch 32: Alternating Current | 2hrs & 37mins | 0% complete | ||
Ch 33: Electromagnetic Waves | 2hrs & 6mins | 0% complete | ||
Ch 34: Geometric Optics | 2hrs & 51mins | 0% complete | ||
Ch 35: Wave Optics | 1hr & 15mins | 0% complete | ||
Ch 37: Special Relativity | 2hrs & 10mins | 0% complete | ||
Ch 38: Particle-Wave Duality | Not available yet | |||
Ch 39: Atomic Structure | Not available yet | |||
Ch 40: Nuclear Physics | Not available yet | |||
Ch 41: Quantum Mechanics | Not available yet |
Sections | |||
---|---|---|---|
Spring Force (Hooke's Law) | 15 mins | 0 completed | Learn |
Intro to Simple Harmonic Motion (Horizontal Springs) | 32 mins | 0 completed | Learn |
Energy in Simple Harmonic Motion | 22 mins | 0 completed | Learn |
Simple Harmonic Motion of Vertical Springs | 19 mins | 0 completed | Learn |
Simple Harmonic Motion of Pendulums | 25 mins | 0 completed | Learn |
Energy in Pendulums | 16 mins | 0 completed | Learn |
Concept #1: Intro to Simple Harmonic Motion
Example #1: Example
Practice: A mass-spring system with an angular frequency ω = 8π rad/s oscillates back and forth. (a) Assuming it starts from rest, how much time passes before the mass has a speed of 0 again? (b) How many full cycles does the system complete in 60s?
Concept #2: Equations of Simple Harmonic Motion
Practice: A 4-kg mass on a spring is released 5 m away from equilibrium position and takes 1.5 s to reach its equilibrium position. (a) Find the spring’s force constant. (b) Find the object’s max speed.
Example #2: Example
Practice: What is the equation for the position of a mass moving on the end of a spring which is stretched 8.8cm from equilibrium and then released from rest, and whose period is 0.66s? What will be the object’s position after 1.4s?
Example #3: Example
Join thousands of students and gain free access to 55 hours of Physics videos that follow the topics your textbook covers.
Enter your friends' email addresses to invite them: