Practice: An aircraft engine takes in 9 kJ of heat and expels 6.4 kJ of heat each cycle. How much mechanical work does the engine do each cycle?
Subjects
All Chapters | ||||
---|---|---|---|---|
Ch 01: Intro to Physics; Units | 1hr & 22mins | 0% complete | ||
Ch 02: 1D Motion / Kinematics | 4hrs & 13mins | 0% complete | ||
Ch 03: Vectors | 2hrs & 43mins | 0% complete | ||
Ch 04: 2D Kinematics | 2hrs | 0% complete | ||
Ch 05: Projectile Motion | 2hrs & 57mins | 0% complete | ||
Ch 06: Intro to Forces (Dynamics) | 3hrs & 20mins | 0% complete | ||
Ch 07: Friction, Inclines, Systems | 2hrs & 43mins | 0% complete | ||
Ch 08: Centripetal Forces & Gravitation | 3hrs & 47mins | 0% complete | ||
Ch 09: Work & Energy | 1hr & 58mins | 0% complete | ||
Ch 10: Conservation of Energy | 2hrs & 54mins | 0% complete | ||
Ch 11: Momentum & Impulse | 3hrs & 45mins | 0% complete | ||
Ch 12: Rotational Kinematics | 3hrs & 3mins | 0% complete | ||
Ch 13: Rotational Inertia & Energy | 7hrs & 4mins | 0% complete | ||
Ch 14: Torque & Rotational Dynamics | 2hrs & 10mins | 0% complete | ||
Ch 15: Rotational Equilibrium | 4hrs & 8mins | 0% complete | ||
Ch 16: Angular Momentum | 3hrs & 6mins | 0% complete | ||
Ch 17: Periodic Motion | 2hrs & 16mins | 0% complete | ||
Ch 19: Waves & Sound | 3hrs & 25mins | 0% complete | ||
Ch 20: Fluid Mechanics | 4hrs & 35mins | 0% complete | ||
Ch 21: Heat and Temperature | 3hrs & 15mins | 0% complete | ||
Ch 22: Kinetic Theory of Ideal Gases | 1hr & 44mins | 0% complete | ||
Ch 23: The First Law of Thermodynamics | 1hr & 28mins | 0% complete | ||
Ch 24: The Second Law of Thermodynamics | 3hrs & 9mins | 0% complete | ||
Ch 25: Electric Force & Field; Gauss' Law | 3hrs & 34mins | 0% complete | ||
Ch 26: Electric Potential | 1hr & 56mins | 0% complete | ||
Ch 27: Capacitors & Dielectrics | 2hrs & 2mins | 0% complete | ||
Ch 28: Resistors & DC Circuits | 3hrs & 20mins | 0% complete | ||
Ch 29: Magnetic Fields and Forces | 2hrs & 34mins | 0% complete | ||
Ch 30: Sources of Magnetic Field | 2hrs & 30mins | 0% complete | ||
Ch 31: Induction and Inductance | 3hrs & 38mins | 0% complete | ||
Ch 32: Alternating Current | 2hrs & 37mins | 0% complete | ||
Ch 33: Electromagnetic Waves | 44mins | 0% complete | ||
Ch 34: Geometric Optics | 3hrs | 0% complete | ||
Ch 35: Wave Optics | 1hr & 15mins | 0% complete | ||
Ch 37: Special Relativity | 2hrs & 10mins | 0% complete | ||
Ch 38: Particle-Wave Duality | Not available yet | |||
Ch 39: Atomic Structure | Not available yet | |||
Ch 40: Nuclear Physics | Not available yet | |||
Ch 41: Quantum Mechanics | Not available yet |
Sections | |||
---|---|---|---|
Heat Engines and the Second Law of Thermodynamics | 32 mins | 0 completed | Learn |
Heat Engines & PV Diagrams | 18 mins | 0 completed | Learn |
The Otto Cycle | 29 mins | 0 completed | Learn |
The Carnot Cycle | 21 mins | 0 completed | Learn |
Refrigerators | 23 mins | 0 completed | Learn |
Entropy and the Second Law of Thermodynamics | 32 mins | 0 completed | Learn |
Entropy Equations for Special Processes | 24 mins | 0 completed | Learn |
Statistical Interpretation of Entropy | 12 mins | 0 completed | Learn |
Concept #1: Introduction to Heat Engines
Practice: An aircraft engine takes in 9 kJ of heat and expels 6.4 kJ of heat each cycle. How much mechanical work does the engine do each cycle?
Example #1: Power Output of a Gasoline Engine
Practice: A heat engine uses a tank of ice water as a cold reservoir. The engine takes in 8 kJ of heat from the hot reservoir, and the heat expelled melts 18g of ice in the tank. How much work does this engine do?
Concept #2: Thermal Efficiency & The Second Law of Thermodynamics
Practice: A steam turbine takes in 75g of water and boils it as heat energy to run a 40% efficient engine. How much work does this engine do per cycle?
Example #2: Efficiency of a Nuclear Power Plant
Join thousands of students and gain free access to 55 hours of Physics videos that follow the topics your textbook covers.
Enter your friends' email addresses to invite them: