Practice: A wooden door is 1 m wide, 2.5 m tall, 6 cm thick, and weighs 400 N. What is the density of the wood in g/cm^{3}? (use *g* = 10 m/s^{2})

Clutch Prep is now a part of Pearson

Subjects

All Chapters | ||||
---|---|---|---|---|

Ch 01: Intro to Physics; Units | 1hr & 22mins | 0% complete | ||

Ch 02: 1D Motion / Kinematics | 4hrs & 13mins | 0% complete | ||

Ch 03: Vectors | 2hrs & 43mins | 0% complete | ||

Ch 04: 2D Kinematics | 2hrs | 0% complete | ||

Ch 05: Projectile Motion | 2hrs & 57mins | 0% complete | ||

Ch 06: Intro to Forces (Dynamics) | 3hrs & 20mins | 0% complete | ||

Ch 07: Friction, Inclines, Systems | 2hrs & 43mins | 0% complete | ||

Ch 08: Centripetal Forces & Gravitation | 3hrs & 47mins | 0% complete | ||

Ch 09: Work & Energy | 1hr & 58mins | 0% complete | ||

Ch 10: Conservation of Energy | 2hrs & 54mins | 0% complete | ||

Ch 11: Momentum & Impulse | 3hrs & 45mins | 0% complete | ||

Ch 12: Rotational Kinematics | 3hrs & 3mins | 0% complete | ||

Ch 13: Rotational Inertia & Energy | 7hrs & 4mins | 0% complete | ||

Ch 14: Torque & Rotational Dynamics | 2hrs & 10mins | 0% complete | ||

Ch 15: Rotational Equilibrium | 4hrs & 8mins | 0% complete | ||

Ch 16: Angular Momentum | 3hrs & 6mins | 0% complete | ||

Ch 17: Periodic Motion | 2hrs & 16mins | 0% complete | ||

Ch 19: Waves & Sound | 3hrs & 25mins | 0% complete | ||

Ch 20: Fluid Mechanics | 4hrs & 35mins | 0% complete | ||

Ch 21: Heat and Temperature | 3hrs & 15mins | 0% complete | ||

Ch 22: Kinetic Theory of Ideal Gases | 1hr & 44mins | 0% complete | ||

Ch 23: The First Law of Thermodynamics | 1hr & 28mins | 0% complete | ||

Ch 24: The Second Law of Thermodynamics | 3hrs & 9mins | 0% complete | ||

Ch 25: Electric Force & Field; Gauss' Law | 3hrs & 34mins | 0% complete | ||

Ch 26: Electric Potential | 1hr & 56mins | 0% complete | ||

Ch 27: Capacitors & Dielectrics | 2hrs & 2mins | 0% complete | ||

Ch 28: Resistors & DC Circuits | 3hrs & 20mins | 0% complete | ||

Ch 29: Magnetic Fields and Forces | 2hrs & 34mins | 0% complete | ||

Ch 30: Sources of Magnetic Field | 2hrs & 30mins | 0% complete | ||

Ch 31: Induction and Inductance | 3hrs & 38mins | 0% complete | ||

Ch 32: Alternating Current | 2hrs & 37mins | 0% complete | ||

Ch 33: Electromagnetic Waves | 44mins | 0% complete | ||

Ch 34: Geometric Optics | 3hrs | 0% complete | ||

Ch 35: Wave Optics | 1hr & 15mins | 0% complete | ||

Ch 37: Special Relativity | 2hrs & 10mins | 0% complete | ||

Ch 38: Particle-Wave Duality | Not available yet | |||

Ch 39: Atomic Structure | Not available yet | |||

Ch 40: Nuclear Physics | Not available yet | |||

Ch 41: Quantum Mechanics | Not available yet |

Sections | |||
---|---|---|---|

Density | 33 mins | 0 completed | Learn |

Intro to Pressure | 71 mins | 0 completed | Learn |

Pascal's Law & Hydraulic Lift | 28 mins | 0 completed | Learn |

Pressure Gauge: Barometer | 13 mins | 0 completed | Learn |

Pressure Gauge: Manometer | 15 mins | 0 completed | Learn |

Pressure Gauge: U-shaped Tube | 22 mins | 0 completed | Learn |

Buoyancy & Buoyant Force | 64 mins | 0 completed | Learn |

Ideal vs Real Fluids | 4 mins | 0 completed | Learn |

Fluid Flow & Continuity Equation | 25 mins | 0 completed | Learn |

Concept #1: Intro to Density

Concept #2: Density Values & Specific Gravity

Practice: A wooden door is 1 m wide, 2.5 m tall, 6 cm thick, and weighs 400 N. What is the density of the wood in g/cm^{3}? (use *g* = 10 m/s^{2})

Practice: Suppose an 80 kg (176 lb) person has 5.5 L of blood (1,060 kg/m^{3} ) in their body. How much of this person’s total mass consists of blood? What percentage of the person’s total mass is blood?

Practice: You want to verify if a 70-g crown is in fact made of pure gold (19.32 g/cm^{3} ), so you lower it by a string into a deep bucket of water that is filled to the top. When the crown is completely submerged, you measure that 3.62 mL of water has overflown. Is the crown made of pure gold?

Concept #3: Specific Gravity

Join **thousands** of students and gain free access to **55 hours** of Physics videos that follow the topics **your textbook** covers.

Enter your friends' email addresses to invite them:

We invited your friends!