Practice: A gas in a cylinder held at a constant pressure 1.80×105 Pa expands from a volume of 1.2 m3 to 1.6 m3. The internal energy of the gas decreases from 4.40×105 J to 3×105 J. How much heat was transferred to the gas?
Subjects
All Chapters | ||||
---|---|---|---|---|
Ch 01: Intro to Physics; Units | 1hr & 22mins | 0% complete | ||
Ch 02: 1D Motion / Kinematics | 4hrs & 13mins | 0% complete | ||
Ch 03: Vectors | 2hrs & 43mins | 0% complete | ||
Ch 04: 2D Kinematics | 2hrs | 0% complete | ||
Ch 05: Projectile Motion | 2hrs & 57mins | 0% complete | ||
Ch 06: Intro to Forces (Dynamics) | 3hrs & 20mins | 0% complete | ||
Ch 07: Friction, Inclines, Systems | 2hrs & 43mins | 0% complete | ||
Ch 08: Centripetal Forces & Gravitation | 3hrs & 47mins | 0% complete | ||
Ch 09: Work & Energy | 1hr & 58mins | 0% complete | ||
Ch 10: Conservation of Energy | 2hrs & 54mins | 0% complete | ||
Ch 11: Momentum & Impulse | 3hrs & 45mins | 0% complete | ||
Ch 12: Rotational Kinematics | 3hrs & 3mins | 0% complete | ||
Ch 13: Rotational Inertia & Energy | 7hrs & 4mins | 0% complete | ||
Ch 14: Torque & Rotational Dynamics | 2hrs & 10mins | 0% complete | ||
Ch 15: Rotational Equilibrium | 4hrs & 8mins | 0% complete | ||
Ch 16: Angular Momentum | 3hrs & 6mins | 0% complete | ||
Ch 17: Periodic Motion | 2hrs & 16mins | 0% complete | ||
Ch 19: Waves & Sound | 3hrs & 25mins | 0% complete | ||
Ch 20: Fluid Mechanics | 4hrs & 35mins | 0% complete | ||
Ch 21: Heat and Temperature | 3hrs & 15mins | 0% complete | ||
Ch 22: Kinetic Theory of Ideal Gases | 1hr & 44mins | 0% complete | ||
Ch 23: The First Law of Thermodynamics | 1hr & 28mins | 0% complete | ||
Ch 24: The Second Law of Thermodynamics | 3hrs & 9mins | 0% complete | ||
Ch 25: Electric Force & Field; Gauss' Law | 3hrs & 34mins | 0% complete | ||
Ch 26: Electric Potential | 1hr & 56mins | 0% complete | ||
Ch 27: Capacitors & Dielectrics | 2hrs & 2mins | 0% complete | ||
Ch 28: Resistors & DC Circuits | 3hrs & 20mins | 0% complete | ||
Ch 29: Magnetic Fields and Forces | 2hrs & 34mins | 0% complete | ||
Ch 30: Sources of Magnetic Field | 2hrs & 30mins | 0% complete | ||
Ch 31: Induction and Inductance | 3hrs & 38mins | 0% complete | ||
Ch 32: Alternating Current | 2hrs & 37mins | 0% complete | ||
Ch 33: Electromagnetic Waves | 2hrs & 6mins | 0% complete | ||
Ch 34: Geometric Optics | 3hrs | 0% complete | ||
Ch 35: Wave Optics | 1hr & 15mins | 0% complete | ||
Ch 37: Special Relativity | 2hrs & 10mins | 0% complete | ||
Ch 38: Particle-Wave Duality | Not available yet | |||
Ch 39: Atomic Structure | Not available yet | |||
Ch 40: Nuclear Physics | Not available yet | |||
Ch 41: Quantum Mechanics | Not available yet |
Sections | |||
---|---|---|---|
Heat Equations for Special Processes & Molar Specific Heats | 16 mins | 0 completed | Learn |
First Law of Thermodynamics | 22 mins | 0 completed | Learn |
Work Done Through Multiple Processes | 16 mins | 0 completed | Learn |
Cyclic Thermodynamic Processes | 20 mins | 0 completed | Learn |
PV Diagrams & Work | 12 mins | 0 completed | Learn |
Concept #1: The First Law of Thermodynamics
Practice: A gas in a cylinder held at a constant pressure 1.80×105 Pa expands from a volume of 1.2 m3 to 1.6 m3. The internal energy of the gas decreases from 4.40×105 J to 3×105 J. How much heat was transferred to the gas?
Concept #2: Alternate Equation of the First Law of Thermodynamics
Practice: The internal energy of a system decreases by 500 J, and 230 J of work is done on the system. What is the heat transfer into or out of this system?
Example #1: Calculating Work Done on Monoatomic Gas
Join thousands of students and gain free access to 55 hours of Physics videos that follow the topics your textbook covers.
Enter your friends' email addresses to invite them: