Clutch Prep is now a part of Pearson
Ch.7 Energy, Rate and EquilibriumWorksheetSee all chapters
All Chapters
Ch.1 Matter and Measurements
Ch.2 Atoms and the Periodic Table
Ch.3 Ionic Compounds
Ch.4 Molecular Compounds
Ch.5 Classification & Balancing of Chemical Reactions
Ch.6 Chemical Reactions & Quantities
Ch.7 Energy, Rate and Equilibrium
Ch.8 Gases, Liquids and Solids
Ch.9 Solutions
Ch.10 Acids and Bases
Ch.11 Nuclear Chemistry
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Nature of Energy
First Law of Thermodynamics
Endothermic & Exothermic Reactions
Bond Energy
Thermochemical Equations
Heat Capacity
Thermal Equilibrium (Simplified)
Hess's Law
Rate of Reaction
Energy Diagrams
Chemical Equilibrium
The Equilibrium Constant
Le Chatelier's Principle
Solubility Product Constant (Ksp)
Spontaneous Reaction
Entropy (Simplified)
Gibbs Free Energy (Simplified)

Thermal Equilibrium involves two substances that are in physical contact reaching the same final temperature over time.

Thermal Equilibrium Reactions

Concept #1: Thermal Equilibrium

Example #1: If 50 g block of lead at 250 ºC is submerged in a solution at 90 ºC, the final temperature of the solution will be:

Practice: If 53.2 g Al at 120.0 ºC is placed in 110.0 g H2O at 90 ºC within an insulated container that absorbs a negligible amount of heat, what is the final temperature of the aluminum? The specific heat capacities of water and aluminum are 4.184 J/g ∙ ºC and 0.897 J/g ∙ ºC, respectively.