Clutch Prep is now a part of Pearson
Ch.20 - Organic ChemistryWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch.17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds
Sections
Introduction to Organic Chemistry
Structural Formula
Chirality
Optical Isomers
Hydrocarbon
The Alkyl Group
Naming Alkanes
Naming Alkenes
Naming Alkynes
Alkane Reactions
Alkenes and Alkynes
Benzene Reactions
Functional Groups
Alcohol Reactions
Carboxylic Acid Derivative Reactions

Optiical activity deals with the ability of a solution to rotate plane polarized light. 

Chirality and Optical Activity

Concept #1: Polarimeter

Chiral molecules can rotate plane polarized light and the exact angle of rotation can be calculated with a polarimeter

If light rotates to the right then the chiral molecule is referred to as dextrorotatory

If light rotates to the left then the chiral molecule is referred to as levorotatory

Example #1: Which of the following compounds would be optically active?