Subjects
Sections | |||
---|---|---|---|
Introduction to Organic Chemistry | 4 mins | 0 completed | Learn |
Structural Formula | 15 mins | 0 completed | Learn |
Chirality | 15 mins | 0 completed | Learn |
Optical Isomers | 8 mins | 0 completed | Learn |
Hydrocarbon | 24 mins | 0 completed | Learn |
The Alkyl Group | 18 mins | 0 completed | Learn |
Naming Alkanes | 14 mins | 0 completed | Learn |
Naming Alkenes | 11 mins | 0 completed | Learn |
Naming Alkynes | 4 mins | 0 completed | Learn |
Alkane Reactions | 13 mins | 0 completed | Learn |
Alkenes and Alkynes | 15 mins | 0 completed | Learn |
Benzene Reactions | 7 mins | 0 completed | Learn |
Functional Groups | 21 mins | 0 completed | Learn |
Alcohol Reactions | 6 mins | 0 completed | Learn |
Carboxylic Acid Derivative Reactions | 4 mins | 0 completed | Learn |
Optiical activity deals with the ability of a solution to rotate plane polarized light.
Concept #1: Polarimeter
Chiral molecules can rotate plane polarized light and the exact angle of rotation can be calculated with a polarimeter.
If light rotates to the right then the chiral molecule is referred to as dextrorotatory.
If light rotates to the left then the chiral molecule is referred to as levorotatory.
Example #1: Which of the following compounds would be optically active?
Join thousands of students and gain free access to 46 hours of Chemistry videos that follow the topics your textbook covers.
Enter your friends' email addresses to invite them: