Clutch Prep is now a part of Pearson
Ch.12 - SolutionsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch.17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds
Sections
Solutions: Solubility and Intermolecular Forces
Molality
Parts per Million (ppm)
Mole Fraction
Solutions: Mass Percent
Types of Aqueous Solutions
Intro to Henry's Law
Henry's Law Calculations
The Colligative Properties
Boiling Point Elevation
Freezing Point Depression
Osmosis
Osmotic Pressure
Vapor Pressure Lowering (Raoult's Law)
Additional Guides
The Freezing Point Depression (IGNORE)

Freezing Point Depression is the phenomenon when adding a solute to a pure solvent results in decreased freezing point of the solvent.

Freezing Point Depression Calculations

Concept #1: Freezing Point Depression

Example #1: Calculate the freezing point of a solution containing 110.7 g glucose, C6H12O6, dissolved in 302.6 g water.

Practice: How many moles of ethylene glycol, C2H6O2, must be added to 1,000 g of water to form a solution that has a freezing point of –10ºC?

Practice: An ethylene glycol solution contains 28.3 g of ethylene glycol, C2H6O2 in 97.2 mL of water. Calculate the freezing point of the solution. The density of water 1.00 g/mL.

Practice: When 825 g of an unknown is dissolved in 3.45 L of water, the freezing point of the solution is decreased by 2.89°C. Assuming that the unknown compound is a non-electrolyte, calculate its molar mass.