Clutch Prep is now a part of Pearson
Ch.18 - ElectrochemistryWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch.17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds
Sections
Standard Reduction Potentials
Intro to Electrochemical Cells
Galvanic Cell
Electrolytic Cell
Cell Potential: Standard
Cell Potential: The Nernst Equation
Cell Potential and Gibbs Free Energy
Cell Potential and Equilibrium
Cell Potential: G and K
Cell Notation
Electroplating

Gibbs Free Energy connects together Standard Cell Potential and the Equilibrium Constant

Gibbs Free Energy's Connections

Concept #1: Through Gibbs Free Energy a new formula can be derived to connect the Standard Cell Potential and the Equilibrium Constant.

Example #1: A certain electrochemical reaction involves the transferring of 4 electrons. If the value of its equilibrium constant is 2.50 x 1012 at 25.0ºC, calculate the standard cell potential.

Practice: Calculate the equilibrium constant for the following reaction at 25ºC. 

Fe (s) + I2 (s)  →  Fe2+ (aq) + 2 I (aq)

Given the following reduction potentials: 

Fe2+(aq) + 2 e  →. Fe (s)                          E°red = – 0.45 V

I2 (s) + 2 e  →. 2 I (aq)                           E°red = + 0.54 V