Clutch Prep is now a part of Pearson
Ch. 7 - Enzyme Inhibition and Regulation WorksheetSee all chapters
All Chapters
Ch. 1 - Introduction to Biochemistry
Ch. 2 - Water
Ch. 3 - Amino Acids
Ch. 4 - Protein Structure
Ch. 5 - Protein Techniques
Ch. 6 - Enzymes and Enzyme Kinetics
Ch. 7 - Enzyme Inhibition and Regulation
Ch. 8 - Protein Function
Ch. 9 - Carbohydrates
Ch. 10 - Lipids
Ch. 11 - Biological Membranes and Transport
Ch. 12 - Biosignaling
Clutch Review 1: Nucleic Acids, Lipids, & Membranes
Clutch Review 2: Biosignaling, Glycolysis, Gluconeogenesis, & PP-Pathway
Clutch Review 3: Pyruvate & Fatty Acid Oxidation, Citric Acid Cycle, & Glycogen Metabolism
Clutch Review 4: Amino Acid Oxidation, Oxidative Phosphorylation, & Photophosphorylation
Sections
Enzyme Inhibition
Irreversible Inhibition
Reversible Inhibition
Inhibition Constant
Degree of Inhibition
Apparent Km and Vmax
Inhibition Effects on Reaction Rate
Competitive Inhibition
Uncompetitive Inhibition
Mixed Inhibition
Noncompetitive Inhibition
Recap of Reversible Inhibition
Allosteric Regulation
Allosteric Kinetics
Allosteric Enzyme Conformations
Allosteric Effectors
Concerted (MWC) Model
Sequential (KNF) Model
Negative Feedback
Positive Feedback
Post Translational Modification
Ubiquitination
Phosphorylation
Zymogens

Concept #1: Apparent Km and Vmax

Concept #2: Kmapp and Vmaxapp Are Affected by α And/Or α’

Example #1: The KI value for a certain competitive inhibitor is 2 µM.  When no inhibitor is present, the Km value is 10 µM.  Calculate the apparent Km when 4 µM inhibitor is present.

Practice: Competitive inhibitor A at a concentration of 2 μM doubles the apparent K m for an enzymatic reaction, whereas competitive inhibitor B at a concentration of 9 μM quadruples the apparent Km. What is the ratio of the K I for inhibitor B to the K I for inhibitor A?

Practice: The KI value for a certain competitive inhibitor is 10 mM. When no inhibitor is present, the Km value is 50 mM. Calculate the apparent Km when 40 mM inhibitor is present.

Practice: Uncompetitive inhibitor A at a concentration of 4 mM cuts the K mapp in half for an enzymatic reaction, whereas the Kmapp is one-fourth the Km in the presence of 18 mM uncompetitive inhibitor B. What is the ratio of the K’I for inhibitor A to the K’I for inhibitor B?